Wallis , John

Wallis , John
(1616–1703) English mathematician and theologian
Born at Ashford in Kent, Wallis was educated at Cambridge University (1632–40), obtaining his MA in 1640. His early training was in theology and it was as a theologian that he first made his name. He took holy orders and eventually became bishop of Winchester. He moved to London in 1645 where he became seriously interested in mathematics and in 1649 he was appointed to the Savilian Chair in Geometry at Oxford University.
Wallis's most celebrated mathematical work is contained in his treatise the Arithmetica infinitorum (1655; The Arithmetic of Infinitesimals). In this work he gave an infinite series expression for π. Generally the treatise took the development of 17th-century mathematics a significant step nearer Newton's creation of the infinitesimal calculus. Wallis was one of the first mathematicians to introduce the functional mode of thinking, which was to be of such importance in Newton's work. He also did notable work on conic sections and published a treatise on them, Tractatus de sectionibus conicis (1659; Tract on Conic Sections), which developed the subject in an ingeniously novel fashion. His writings were certainly read by Newton and are known to have made a considerable impact on him. Before Newton, Wallis was probably one of the most influential of English mathematicians.
Wallis wrote a substantial history of mathematics. His other interests included music and the study of language. He was active in the weekly scientific meetings that eventually led to the foundation of the Royal Society in 1662. During the English Civil War he was a Parliamentarian and put his mathematical talents to use in decoding enciphered letters.

Scientists. . 2011.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Wallis, John — ▪ English mathematician born Nov. 23, 1616, Ashford, Kent, Eng. died Oct. 28, 1703, Oxford, Oxfordshire  English mathematician who contributed substantially to the origins of the calculus and was the most influential English mathematician before… …   Universalium

  • Wallis, John — ► (1616 1703) Matemático inglés. Contribuyó a la creación del cálculo. Fue también uno de los creadores de la enseñanza de los sordomudos …   Enciclopedia Universal

  • John Wallis — John Wallis …   Deutsch Wikipedia

  • John Wallis : Les Applications Cliniques De La Phonétique Et L'éducation Des Sourds — John Wallis Pour les articles homonymes, voir Wallis. John Wallis John Wallis, né le 23 novembre …   Wikipédia en Français

  • John Wallis : les applications cliniques de la phonétique et l'éducation des sourds — John Wallis Pour les articles homonymes, voir Wallis. John Wallis John Wallis, né le 23 novembre …   Wikipédia en Français

  • John wallis : les applications cliniques de la phonétique et l'éducation des sourds — John Wallis Pour les articles homonymes, voir Wallis. John Wallis John Wallis, né le 23 novembre …   Wikipédia en Français

  • John Wallis — John Wallis. John Wallis (Ashford, 23 de noviembre de 1616 – Oxford, 28 de octubre de 1703) fue un matemático inglés a quien se atribuye en parte el desarrollo del cálculo moderno. Fue un precursor del cálculo infinitesi …   Wikipedia Español

  • WALLIS (J.) — WALLIS JOHN (1616 1703) Mathématicien anglais né à Ashford et mort à Oxford, Wallis est un des plus illustres précurseurs d’Isaac Newton. En 1632, il entre au collège Emmanuel de Cambridge, où il se distingue dans de nombreux domaines. Environ… …   Encyclopédie Universelle

  • Wallis — Wallis, John * * * (as used in expressions) Vidor, King (Wallis) Wallis y Futuna, islas Wallis, islas Wallis, Sir Barnes (Neville) Windsor, Wallis Warfield, duquesa de …   Enciclopedia Universal

  • Wallis [3] — Wallis, John, berühmter Mathematiker, geb. 1616 zu Ashfort in England, war zuerst Prediger, 1649 Professor der Geometrie in Oxford, 1660 von Karl II. zu seinem Kaplan ernannt, hierauf Mitglied der neu errichteten königl. Societät; st. 1703. Seine …   Herders Conversations-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”